489 research outputs found

    Stationary Distribution Convergence of the Offered Waiting Processes for GI/GI/1+GI Queues in Heavy Traffic

    Full text link
    A result of Ward and Glynn (2005) asserts that the sequence of scaled offered waiting time processes of the GI/GI/1+GIGI/GI/1+GI queue converges weakly to a reflected Ornstein-Uhlenbeck process (ROU) in the positive real line, as the traffic intensity approaches one. As a consequence, the stationary distribution of a ROU process, which is a truncated normal, should approximate the scaled stationary distribution of the offered waiting time in a GI/GI/1+GIGI/GI/1+GI queue; however, no such result has been proved. We prove the aforementioned convergence, and the convergence of the moments, in heavy traffic, thus resolving a question left open in Ward and Glynn (2005). In comparison to Kingman's classical result in Kingman (1961) showing that an exponential distribution approximates the scaled stationary offered waiting time distribution in a GI/GI/1GI/GI/1 queue in heavy traffic, our result confirms that the addition of customer abandonment has a non-trivial effect on the queue stationary behavior.Comment: 29 page

    Routing and Staffing when Servers are Strategic

    Get PDF
    Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend both on how much work there is, and how the work is divided between the people responsible for it. In a service system, the routing and staffing policies control such workload incentives; and so the rate servers work will be impacted by the system's routing and staffing policies. This observation has consequences when modeling service system performance, and our objective is to investigate those consequences. We do this in the context of the M/M/N queue, which is the canonical model for large service systems. First, we present a model for "strategic" servers that choose their service rate in order to maximize a trade-off between an "effort cost", which captures the idea that servers exert more effort when working at a faster rate, and a "value of idleness", which assumes that servers value having idle time. Next, we characterize the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle time. We find that the system must operate in a quality-driven regime, in which servers have idle time, in order for an equilibrium to exist, which implies that the staffing must have a first-order term that strictly exceeds that of the common square-root staffing policy. Then, within the class of policies that admit an equilibrium, we (asymptotically) solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs. Finally, we end by exploring the question of whether routing policies that are based on the service rate, instead of the server idle time, can improve system performance.Comment: First submitted for journal publication in 2014; accepted for publication in Operations Research in 2016. Presented in select conferences throughout 201

    LGBTQ & You: Connecting Collections with the Campus Community

    Full text link
    Musselman Library’s LGBTQ Research Guide, established in 2012, is a resource that goes beyond connecting the library’s collections with the campus community and providing access. This research guide has generated opportunities to grow campus partnerships, foster a student’s interest in librarianship, and create a gateway for research and learning in the LGBTQ community that goes beyond the classroom. In our presentation we will outline the project from its early days as a student project to its current life as collaboration between the library and Gettysburg Colleges’ Office of LGBTQA Advocacy & Education
    corecore